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Random Speckle Potential
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0V    − typical magnitude of the random potential.

0R    − correlation radius, 2 2

0( / mR 0)  = Ε    −� correlation energy.
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Consider a particle with energy 
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In the Born approximation, the scattering crossection (in 3D) on a typical

barrier (or well) is
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µ − chemical potential of the BEC.

cµ ε   −� coherent weakly disordered  BEC.

cµ ε   −� condensate droplets, or localized bosons.

The critical density 
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(a  − scattering length )

This picture is confirmed by an approach starting with the low density limit

(e.g. G. Falco, T. Nattermann and V. Pokrovsky, PRB 80, 104515 (2009)). 

and tracing the interaction-induced delocalization.  
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For  energy 0E V∼
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On the classical level the problem reduces to that of percolation.
 

pE   − percolation threshold.

For
'

pEµ <   − 

' " " .p pE E quantum percolation threshold>   −    

isolated lakes of condensate. 

For
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pEµ >   − coherent BEC.
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Topics NOT covered:

(i)  Finite temperature, effect of disorder on 
cT

(ii)  Role of the confining trap

(iii) Disordered Bose-Hubbard model

(iv)  Fermions

(v) ………………………………………

(vi) ……………………………………..



Free expansion of a BEC
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Solution (self-similar):
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- Linear expansion.

At  t=0   the condensate is released from the trap and it starts expanding according to: 
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Expansion in the presence of disorder
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In the long time, large distance limit
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Two comments about expansion of a Fermi gas,
in a disordered potential.

3

( ) ( , , ) ( , )kdR d k P r R t W k Rε   ∫ ∫
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1. The average density

ˆ( , )n r t< >
�

•The shape of cloud, in the long time large distance limit, is the same
as for the BEC in the Gross-Pitaevskii approximation.

2. Even in the absence of disorder the density pattern, obtained in a single  

image, will look noisy and “grainy”. A. Legget, Rev. Mod. Phys. 73, 307 (2001). 

E. Altman, E. Demler, M. Lukin, PRA 70, 013603 (2004).

*  “Atomic Speckles” in the presence of disorder.
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Topics NOT covered:

(i)  Expansion in 1D random potential

(ii) Cold atoms in a quasiperiodic potential

(iii) Interplay between weak nonlinearity and disorder

(iv) ………..



Free expansion of a BEC from a disordered trap

Strongly anisotropic BEC  (quasi 1D)

Radial confinement 2 21
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Axial confinement is neglected but there is a potential  V(z)
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At  t=0 all potentials are switched off and the condensate expands according to:
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The first stage of the expansion, 0 1/t t ω⊥< � , is dominated by 

the nonlinearity: rapid radial expansion and, in addition,
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D. Clement , P. Bouyer, A. Aspect, L. Sanchez- Palencia PRA 77, 033631 (2008).

| ( ) | 1zΘ  >We consider -large effects, “atomic caustics”



2 ( ', , )( , ) 'exp[ ( ') ( ')] '
2 2 2

i z z tm im m
z t dz z z i z dz e

i t t i t

ϕψ
π π

=  −  + Θ =∫ ∫
� � �

In full analogy with optics:
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-characteristic time for caustic formation.
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0 .Θ

Density at caustics is controlled by the third derivative of the phase and is 

proportional to 
1/3

0 .Θ

There is also a more singular caustic (cusp), with density proportional to 
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Random potential with correlation length 
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So far we  assumed the condition
2 1na aµ ω⊥ ⊥>>     ⇒   >>�

In the opposite case,
2 1,na a⊥ < the problem becomes strictly

one-dimensional:  In equilibrium all atoms reside in the ground state, 0 ( )χ ρ

of the harmonic oscillator.  Many body correlations become important.

When the gas is released from the trap, the radial expansion will be governed not
by the interaction but by the zero point energy associated with radial motion. 

Phase imprinting can be done with the help of a short potential pulse:
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(the phase can be deterministic or random function of z) 

1D GAS, MANY BODY CORRELATIONS.

The radial part of the wave function, at t=0, is 0 ( ).j
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The axial part is
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where
0Φ is the ground state, prior to the action of the pulse.



At time t=0, just after the phase has been impressed, the trapping potential is

switched off and the gas undergoes radial expansion. The z-dependent part of the 

manybody wavefunction evolves according to 
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We are interested in the one-dimensional , z-dependent part of the  particle density
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In the mean field approach ( ) 2 ( )n p pπδ= and ( , )pG z t

reduces to ( , )z tψ considered previously  (mean field). 

In the interacting gas the conditions for caustics are: 
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α
=      -healing length.

Weak interactions: 1α � and caustics can be formed.

Strong interactions  (Tonks limit): 1α >> No caustics.


